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Hexagonal to square lattice conversion in bilayer systems
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We report the results of extensive molecular dynamics simulations of the reconstructive hexagonal to square
lattice conversion in bilayer colloid systems. Two types of interparticle potential were used to represent the
colloid-colloid interactions in the suspension. One potential, due to Marcus and Rice, is designed to describe
the interaction of sterically stabilized colloid particles. This potential has a term that represents the attraction
between colloid particles when there is incipient overlap between the stabilizing brushes on their surfaces, a
(soft repulsion term that represents the entropy cost associated with interpenetration of the stabilizing brushes,
and a term that represents core-core repulsion. The other potential we used is an almost hard core repulsion
with continuous derivatives. Our results clearly show that the character of the reconstructive hexagonal to
square lattice conversion in bilayer colloid systems is potential dependent. For a system with colloid-colloid
interactions of the Marcus-Rice type, the packing of particles in the square array exhibits a large interlayer
lattice spacing, with the particles located at the minima of the attractive well. In this case the hexagonal to
square lattice transition is first order. For a system with hard core colloid-colloid interactions there are two
degenerate stable intermediate phases, linear and zigzag rhombic, that are separated from the square lattice by
strong first order transitions, and from the hexagonal lattice by either weak first or second order transitions.

PACS numbsefs): 82.70.Dd, 61.20.Ja, 83.70.Hq, 82.70.K]

[. INTRODUCTION and three body contributiorf®]. This form of packing has
been observed in a system of membrane-spanning bacterial
Densely packed colloidal suspensions confined betweetoxin proteins[3].
parallel plates only a few particle diameters apart exhibit a Two types of cooperative particle displacements, with dif-
number of interesting phase transitions as the plate separferent symmetries, can transform a plane hexagonal lattice to
tion and/or the density is varied. This paper is concernec plane square lattice. If stable phases can be found along
with the character of the hexagonal to square lattice transithose displacement modes, the two types of rearrangements
tion that occurs in bilayers confined between plates. Thigenerate two phases with different symmetries. Indeed, inter-
transition must be reconstructive as there is no groupmediate phases between the hexagonal and the square phases
subgroup relation between the two phases. are known, namely, the so-called linear and zigzag rhombic
There are two types of reconstructive phase transitiongphase$4,5]. In each of these intermediate phases the number
one includes transitions realized by diffusion processes, anaf in-plane nearest neighbors is four. In the linear phase the
the other those realized by cooperative displacements of atearest neighbors are arranged with rectangular symmetry,
oms. Group-subgroup related structural phase transitions, @nd in the zigzag rhombic phase they have a kite shaped
a rule, satisfy the Landau criterion that the restructuring pro€onfiguration.
cess is described by the modes of one of the irreducible Let A denote a layer with hexagonal lattice symmetry,
representations of the parent-phase symmetry group. Thend[ a layer with square lattice symmetry. The investiga-
crystal lattice change that occurs in a reconstructive phaséons reported in this paper concern the character of the
transition cannot be described by the modes of a single irre2A—21 transition when the separation between the confin-
ducible representation. A feature peculiar to reconstructivéng walls is 1.80 particle diameters. This transition is one in
transitions is that, along with displacement modes, latticéhe sequence
deformation plays an important role in the transformation of
the crystal structure. An example of this type of transition is
the bce~fcc transformation that is realized by shear defor-
mation of (110 planes along thgl10] direction. Such tran-
sitions, called Martensitic transitions, typically have anoma-that occurs in a confined system as the distance between the
lous propertieg1]. two confining walls increasef6]. Alternatively, thenA
Consider, now, the possible particle packings in one and-n[ll transition can be induced by decreasing the density of
two layer systems. In a one layer, two-dimensional systenthe system for a constant value of the gap between the two
packing of the particles in a square lattice is unstable relativeonfining walls.
to packing of the particles in a hexagonal lattice. In simple A microscopic basis for the sequence of observed transi-
terms, in a one layer system in which the particles interactions, based on free volume theory, has been proppéed
via central forces, the lowest energy configuration has thdhe result of these calculations for the case of a two layer
maximum number of nearest neighbors. On the other handiard sphere system is that the hexagonal to square lattice
in a two layer system a two layer square lattice is stable. It igransition is first order, and dire¢te., without intermediate
worth noting that a stable one layer square lattice is possiblphases However, the analysis did not allow for the exis-
if the particle-particle interaction has appropriately sized twotence of intermediate phases, different fremx and nd,

IAN—-20—-2A—-30—-3A—--- (1.
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that have particle packings that increase the free volume o~ 500
the system.

When, in the vicinity of a phase transition, the correlation 400 |
length of the density-density correlation function is large
relative to the range of intermolecular interactions, it is be- 3.00
lieved that the specific form of the intermolecular interac-
tions, and consequently the system Hamiltonian, plays a mi-
nor role in determining the character of that phase transition.
This notion underlies the introduction of universality classes 1.00 |

200 |

u(rye

and the prediction that the character of transitions that belonc \

to the same university class is the same. The results of ou 0.00 ~

studies clearly show that theA2-2(1 transition depends on v

the interparticle potential. For a system with colloid-colloid -1.00 |

interactions of the Marcus-Rice type, the two layer packing - - - e

of particles in the square array exhibits a large interlayer
lattice spacing, with the particles located at the minima of the
attractive well. In this case the hexagonal to square lattice FIG. 1. Marcus-Rice-type interparticle potentiablid line) and
transition is first order. On the other hand, for a two layera nearly hard sphere interparticle potenti@dshed ling

system with hard core colloid-colloid interactions there are ) . . )

two degenerate stable intermediate states, linear and zigzy Plane, and\ is the total number of particles in the simu-
rhombic phases, that are separated from the square lattice Kftion. Periodic boundary conditions were imposed on the
strong first order transitions, and from the hexagonal latticéimulation cell in thex andy directions, but not in the

by either weak first order or by second order transitions. ~direction. The same number of particles was present in the
simulation cell for all of the densities studied. To study the

properties of the system with different particle densities we
II. MODEL SYSTEM AND COMPUTATIONAL. DETAILS changed the area of the simulation cell in theplane.

Th gel ¢ that h d to studv th Our calculations were carried out for particles subject to
€ model system that we have used to study ey, gifferent interactions. The first of these is the same pair
2A—2[] phase transition consists of 4032 particles con-

tained in a rectangular box with side lengths in the raﬂomteractmn as the used in our previous work, namely,
X:y=7:(8v3/2). The wall separation was fixed at 1.80 par- r*—wce*\4
u(r*)=—eex —( )

" =r/c

ticle diameters.

Since our simulations are concerned with the transition
between solids with different symmetries, we checked the r*—0.96,8
effect of the shape of the box on the symmetry of the equili- +12 ex;{ _(W
brated crystal. For sample densities that support crystals with '

hexagonal and square symmetries we carried out simulationghis pair potentialsee Fig. 1 was designed by Marcus and
with the above mentioned rectangular box for the case thaRice to have the features of colloidal particles that are steri-
the initial configuration is a perfect hexagonal lattice, andcally stabilized by grafted polymer brushes to prevent aggre-
with a square boxcontaining 4050 particlgsvith a perfect  gation induced by van der Waals forces. The first term in Eq.
square lattice as the initial configuration. We found that thg2.1) represents the attraction between colloid particles when
only difference between the equilibrated structures in the difthere is incipient overlap between the stabilizing brushes on
ferent simulation boxes is that a small number of defectsheir surfaces; for simplicity we have taken the functional
(less than 2%is present in those cases for which the crystalform of this attraction to be an inverse even power exponent
symmetry does not match the shape of the simulation boxXyith depthe =1.0kgT and widthww/ o-=ww* =0.006, cen-
The presence of those defects had an insignificant effect ogred atwc* =1.05. The second term in E(.1) is the core-
the calculated properties of the system. Armed with this recore repulsion, which is the dominant contributionut * )
sult, and noting that the number of defects when the hexagq,vhen r* <1; the functional form chosen is very near|y a
nal lattice was present in the square simulation box wagard core repulsion but has continuous derivatives. The last
larger than the number of defects when the square lattice wagrm in Eq.(2.1) is an interpolating soft repulsion, represent-
present in the rectangular box, we have found it convenienhg the entropy cost associated with interpenetration of the
to carry out our simulations in a rectangular box. stabilizing brushes attached to the surfaces of the colloid
Our calculations were carried out, and the results are repartides; it p|ays the role of a Sp]ine function between the
ported below, in terms of the reduced variablés=r/o,  aforementioned attractive and repulsive terms.
z*=27lo, T*=kgTle, p* =po?, andm=1, with o the di- The other colloid-colloid interaction that we used is an

ameter of the particles the depth of the attractive potential almost hard core repulsion with continuous derivatives,
well, p the number density, aneh the mass of the particle.

Although the particles can move from one layer to another, - ~128

: : u(r*)=1x10 8| r*— = . (2.2
on average the number of particles of each layer is the same, 2
so we choose to characterize the state of the system with a
one layer-two-dimensional(2D) number density p,p  The potentials represented in Eq2.1) and (2.2) are dis-
=N/(2A), whereA is the area of the simulation cell in the played in Fig. 1.

1 —64
X —19( % _
ww* +2x10 (r 2)

. (2.9
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The particles in the model system were also subjected to ticles around their lattice sites. The assignments of the par-
one body external potential in ttedirection. Consequently, ticles to one or the other of the phases do not change
all of the thermodynamic properties of the model system ar¢hroughout this time interval.
functions of the strength of this external potential. However, Part of our analysis of the results of the simulations de-

the shape of the potential, pends on the construction of a two-dimensional Voronoi
. n polygon mapping of the particle configurations. The inter-
Uex(Z*) =De(z*), (2.3 Jayer nearest neighbors were identified using a cutoff dis-

. h f. h ; lab with IItance of 1.20- between particles in different layers. Having

Epsgi?ie da;itcokncgsnblmseotw?a ngﬁtfégréoseg{?:s?hzr?no‘(’;’)'/tna"r;’“ecdetermined thex Voronoi vertices around each particle, the
. : PV . area of each Voronoi polygon was calculated by triangula-

properties with the variablds, T, A andH in place ofN, T, Poyg y g

tion from
V, and the strength of the external potential. In Ej3), z*
is the distance from the center of the cell to the center of 10t
mass of the particle ang=128, D=1x10%; this potential A=3 S (XY= YiXise ), 2.9
i=o

confines the particles as if they were in a cell with an effec-
tive wall separation of 1.80-

Since the linear momentum in thedirection is not con- where ;,y;) are the coordinates of the Voronoi vertgx
served in our model systertbecause there is no periodic labeled counterclockwise with a cyclic permutation, i.e., the
boundary condition in this degree of freedprthe tempera- indexn is equal to O.
ture is related to the kinetic ener¢fyand the total number of The molecular dynamicéMD) simulations were carried

degrees of freedom,Ns— 2, by out using the velocity Verlet algorithm and the Verlet neigh-
bor list method for the calculation of the potential energy.
2K The distance at which the potential was cut off wasr1&nd
T=———. (2.9 : . : ; ;
3N-2 the neighbor list cutoff was 2.4 times the projected in-plane

average spacing of the particles. The need for updating of the
The required temperature was created by multiplication oheighbor list was checked at every time step. The average
the velocities by an appropriate constant. The results of théme step used was, in reduced unitsg 50 #; the associ-
simulations that we present in this paper correspon@*o ated rms fluctuation in total energy did not exceed one part in
=1.00. For densities inside the coexistence region of the (P,
system with Marcus-Rice-type interactions, where the hex- The initial configuration for the simulation of the system
agonal packing changes to square packing, we had to iwith the highest one layer areal density*(=1.100) was
crease the temperature of the systeriite=3.00 and then to  taken to be a perfect triangular lattice with half of the par-
reduce it gradually back td*=1.00 in order to observe ticles located in the plane=0.4, and the other half in the
ordered coexisting phases. The same equilibration proceggsanez= —0.4. The lattice points of the layers were arranged
was used, for the corresponding density region, for the syseut-of-registry with respect to one another. The equilibrium

tem with hard core interactions. configuration corresponding to this density was used as the
The lateral pressurey,, was calculated from the lateral intial configuration for calculations with lower densities. The
virial W, highest density configuration was equilibrated for 1
N N 2. 2 x 10" MD steps, and the configurations at each of the other
Wi EZ 3 Xij TYij au(r) 2.5 densities were equilibrated forx610° MD steps. Trajectory
! 2= =0 1 ar ’ ) data were collected for ¥10° MD steps, every 400 time
=1 steps.
We find
lll. RESULTS
NkgT+ (W) . . . .
P :T_ (2.6 A. System with Marcus-Rice-type interactions

We have studied the phase transitions that occur in the
In order to investigate the mean square displacements afensity range 0.3869p35,<1.1000 in a two layer confined
the particles as a function of time in each of the phases for aolloidal suspension in which the colloid-colloid interaction
configuration with coexisting phases, we calculated is of the Marcus-Rice form. The equilibrium state of the
system forp3,=0.9900 is a two layer hexagonal solid, and

N
13 for p5,=<0.9200 is a two layer s lid. The stabilit
2 _ PR 2 pp=0. yer square solid. The stability
() Na; ri() =ri(0)]" @7 domain of the two layer square solid ends with a melting
transition.
The sum is over th&l , particles of phase, wherea=A, (1. We analyze the change in symmetry accompanying the

We identified particles that belong to phases with hexagona2A—21 transition using the distribution of the angle be-
and square packings as those that=a0 are intralayer six tween the lines that connect the centers of three adjacent
and four coordinated, respectively, knowing that the onlyneighbors in the same layéwhich we call the lattice angle
phases present in the system had these packing symmetrid$e value of the lattice angle is 60° for the hexagonal phase,
The mean square displacements were computed for a timend 90° for the square phase, and it has two valdesind
period that permitted the maximum displacements of the paré,, that are related by,=180°— 6, for the linear and the
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FIG. 2. The distribution of the lattice angle for the system with Particle-particle distances on thg plane by using a cutoff
Marcus-Rice-type interactionga) p%,=0.9900, (b) p3,=0.9700, distance which is at the mininmum between the peaks of the
(¢) pip=0.9500, (d) pi,=0.9400,(e) p’,=0.9300, and(f) pi, distribution (* =1.028). The two groups of particle-particle
=0.9200. separations found define coherent domains inxhelane

(see Fig. 6 These data show that the short interlayer
zigzag rhombic phases. The distributionsdgfand §, for the  particle-particle separation is associated with the hexagonal
linear and the zigzag rhombic phases have equal amplitudelattice, and the long interlayer particle-particle separation is

Figure 2 shows the distribution of the lattice angle for theassociated with the square lattice. The fact that packing in
range of densities 0.9260p3,=<0.9900 that span the con- the square lattice exploits positioning of the particles in the
version of the hexagonal phase to the square phase. Thadtractive well of the potential plays a crucial role in deter-
distribution suggests that th&—2J conversion is a direct mining the character of the/2—2[] transition.
first order transition. The in-plane configuration of the par- As shown in Fig. 1, the attractive well of the Marcus-Rice
ticles for a density in the middle of the coexistance regionpotential is centered at 1.85s0 only nearest neighbor inter-
(p35=0.9500) is shown in Fig. 3; the domains of the coex-actions contribute to the energy of the system. Thus, when
isting solids are clearly identifiable. There is a correlationthe bilayer has hexagonal packing there are rgie intra-
between the structures of the upper and the lower layers of
the system: specifically, the same region in xiyelane that 850.0
exhibits one of the packing structures in one layer, exhibits
the same packing structure in the other layer, but with stag-
gered registry. We note that the domain wall between the
two solid structures is composed of five-coordinated atoms.
The first order nature of the transition is also evident in the
isothermal dependence of the lateral pressure on densit .
(Fig. 4), in which there is a clearly developed van der Waals
loop.

Analysis of the intralayer and interlayer particle spacing
distributions(Fig. 5 for the configuration displayed in Fig. 3
show that the former distribution is unimodaxcept for a
small shoulder at around* =1.02), and is centered around
the minimum of the attractive well of the Marcus-Rice po- 00 ; X N .
tential. On the other hand, the interlayer particle spacing dis- 074 078 082 0% 080 0% 0 o2 T o
tribution is bimodal; one of the peaks of the particle-particle ”
distance distribution corresponds to the minimum of the at- FIG. 4. The lateral pressure as a function of the one layer-two
tractive well, and the other is on the soft repulsion part of thedimensional number density for the system with Marcus-Rice-type
Marcus-Rice potential. We can map those two interlayetinteractions.
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FIG. 7. Energy(potential plus kinetit per particle distribution

g 0.030 1 for the system with Marcus-Rice-type interactions for the densities:
S p3p=0.9900(empty triangle, p5,=0.9500(filled circle), and p3p
5 0.020 i =0.9200(empty squarg
e
0.010 1 existence of hexagonal and square packipg,€ 0.9500)
and pure square packirtfpr a density just below the end of
0.000 M 4 it Ty the coexistence regiop;,=0.9200, reveal that the square
' ' T ' ' ’ ' packing configuration has a lower energy per particle than
_ _ _ the hexagonal packing configuration.
FIG. 5. Intralayer(upper figurg and interlayer(lower figure In Fig. 8 we show the results obtained from a two-
particle-particle distance distribution for the configuration shown indimensional Voronoi polygon analysis of each of the layers
Fig. 3. in the bilayer system. Specifically, the figure displays the

distributions of Voronoi polygon area whesh,=0.9900,
I%9500, and 0.9200. The Voronoi polygon area associated
with a particle in the square lattice is seen to be larger than
éhat associated with a particle in the hexagonal lattice. Note
dhat whenp3,=0.9500 the peaks of the bimodal distribution
of Voronoi polygon area are slightly shifted relative to the
values associated with the pure phases. We attribute this dif-
ference to hysteresis which often occurs at a first order phase
transition; i.e., at the selected densities the square lattice and
the hexagonal lattice are just inside the metastable region so

layer and three interlayenearest neighbor interactions per
particle, and when the bilayer has square packing there a
eight (four intralayer and four interlaygmearest neighbor
interactions per particle. Nevertheless, the distribution of th
energy per particle, displayed in Fig. 7 for three densitie
that correspond to pure hexagonal packiftg a density just
above the end of the coexistence regip#,=0.9900), co-

0.020

relative intensity

0.010

0.000,
0.85

Voronoi polygon area (cl)

FIG. 8. The Voronoi polygon area distribution for the system

FIG. 6. The projection of the sho(black line and long(gray =~ with Marcus-Rice-type interactions for the densitipg;=0.9900
line) particle-particle separation on thg plane for the configura- (empty triangle, p3;=0.9500 (filled circle), and p3p=0.9200
tion shown in Fig. 3. (empty square
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of the displacement vector. For the hexagonal lattice, most of the
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y
o
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relative intensit

the former is slightly compressed relative to its equilibrium

configuration and the latter is slightly expanded relative to its

equilibrium configuration. 0.00 ¢ L0.00 ¢ |
The Voronoi polygon analysis of a two-dimensional con- 4 6°Iamcge°angll°(‘;eg;2° 14040 6°Iamczoang;°&eg;2° 140

figuration of particles defines a tiling of thxy plane with the

area of each polygon uniquely associated with the particle FIG. 10. The distribution of the lattice angle for the system with

inside the polygon. Noting that there is more space for mohard core repulsions(@) p3,=1.0300, (b) p3,=1.0200, (c) p3p

tion in thez direction for a particle in the square lattice than =1.0000,(d) p5,=0.9800,(e) p5,=0.9600, andf) p3,=0.9300.

for a particle in the hexagonal lattice, we conclude that if the

particles were hard spheres there would be more free volunigs simulations of confined bilayer systems in which the

per particle in the square lattice than in the hexagonal latticeparticle-particle interaction is a hard core repulsion.

hence a larger entropy per particle in the square lattice than

in the hexagonal lattice. This conclusion cannot be valid B. System with hard sphere interactions

when the particle-particle interaction is of the Marcus-Rice

. ) ) . 7~ We have studied the /2—2[1 transition in the density
form, since we have just shown that in the coexistence reglopange 0.8808& p%,=1.1000 in a two layer confined colloidal
under examination the energy per particle is lower in the ' Pop=--

square lattice than it is in the hexagonal lattice. The resolu-SUSpenSion in which the colloid-colloid interaction is an al-
9 9 ' ost hard core repulsion with continuous derivatiysse

tion of this apparent contradiction is, of course, to be foun q.(2.2)]. As in the preceding study, the wall separation was
in the different amplitudes of particle motion in the two Iat—hf. ed at 1.86- The equilibrium state of the system fpk,

tices. In Fig. 9 we show the mean square displacement of t £ ) .
particles of the configuration shown in Fig. 3. To better ana= 10300 s a two _layer hexagqnal solid, and fphy
lyze the situation, we have shown separately the mean squafe®:9300 is a two layer square solid. ,
displacement function and they component of the displace- The distribution of t_he lattice a_ngle _for the density range
ment in the square and in the hexagonal lattices. The resul&9300<p3;<1.0300 is shown in Fig. 10. Whepj,
show that the maximum displacements of the particles froni= 1.0200, there is a rhombic phase whose smaller lattice
the lattice points in the square lattice are smaller than thosangle, 6, increases with decreasing density ungif,
of the particles from the lattice points in the hexagonal lat-=0.9700, whered; =75°, signaling the onset of coexistence
tice. We also find that, for a particle in the square lattice, théetween the rhombic phase and the phase. The lateral
out-of-plane component of the displacement is greater thapressure as a function of the one layer-two-dimensional
that for a particle in the hexagonal lattice. Thus, for thenumber density is shown in Fig. 11. In the density range
square lattice, the positioning of the particles in the attractivéd.9500< p5,<0.9800, this isotherm displays a van der
well of the potential results in a restriction of the in-plane Waals loop. The density range over which the van der Waals
motion of particles coupled with a reduction in the energyloop exists matches that for coexistence between the two-
per particle. layer-rhombic and 2 phases, which clearly identifies the
Given the preceding interpretation of the symbiosis bedirst order character of that transition.
tween the form of the particle-particle potential and the sta- Identification of the character of the/2-two-layer-
bilization of the square lattice, what should we expect to behombic transition is harder. Our results indicate that this
the character of the/2— 21 transition in a system in which transition can be either weakly first order or continuous. The
the particle-particle interaction lacks an attractive well? Toambiguity in our results is a consequence of the fact that the
answer this question we have carried out molecular dynamtransition spans a very small density range. Whsh
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FIG. 11. The lateral pressure as a function of the one layer-two .
dimensional number density for the system with hard core P . .

repulsions.
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po /e

—1.1200,,=68°, and our data show that the stable phase FIG. 13. Small section of Fig. 12 showing coexistence between
e [ linear (upper partand zigzagdlower pari rhombic phases. The two

is rhombic. For slightly higher densities the existence of % the riaht show the distorti f the h | latti
stable rhombic phase with a value @f that is close to 60° €Xadgons on the right show the distortions ot the hexagonal lattice
to form the rhombic phases, and on the left are the arrangements of

can be masked by thermal fluctuations. : : .
The in-ol fi . f 1h icl h the nearest neighbors in each of the phases. Just one layer is shown,
€ In-plané Con_lguratlon of t ? partic e_s whexp and the size of the circles is smaller than the actual size of the
=0.9800(corresponding to the rhombic phase just before th%amdes_

onset of coxistence with theC2phase is shown in Fig. 12.
The coexistence between linear and zigzag rhombic phasesfég. 13. Note that two of the six neighbors are no longer
readily identified after examination of a small section of thisnearest neighbors, and the nearest neighbor configuration is
configuration that includes both phagd€sgy. 13. If we sup-  kite shapedlower left). The corresponding distortion for the
pose the rhombic phase to be generated by distortion of thiéear rhombic phase is shown in the upper part of Fig. 13,
hexagonal lattice via particle displacement, the structure oWhere the shape of the arrangement of the four nearest neigh-
the distortion can be realized by connecting the six closedpors is rectangular. The results of our simulations show that
neighbors of a central particle. The structure of the distortiorfor the pure rhombic phase, 1.028p3,=<0.9800, the lateral
for the zigzag rhombic phase is shown in the lower right ofpressure isotherm does not show a van der Waals (Bigp

11). Since we have found only one set of values figrand

6,, a unimodal distribution of the energy per parti¢fag.
TIXAX 14) and a unimodal distribution of the Voronoi polygon area

X % (Fig. 19 for any density that corresponds to the rhombic
o : phase, we infer that the linear and zigzag rhombic phases are
88, degenerate and have the same lattice angle, as already sug-
Py S gested by Schmidt and hen[5].
60085050 oo
"l’;"{.’,._., ")’: X IV. DISCUSSION
“‘:;' 5 In a system in which the particle-particle interactions are
0.6.06. 0.0 hard sphere repulsions, theA2-2[1] transition is entropy
2535 00 driven. In contrast, in a system in which the particle-particle
Y X o interactions are of the Marcus-Rice form, the existence of the
X :‘(‘;“ attractive well plays a crucial role in the\2-2[] transition:
% it stabilizes the hexagonal phase and the square phase at the
expense of the rhombic phase. We suggest that this stabili-
Y zation is a consequence of the number of nearest neighbor
Coxy e interactions in each of the phases. Although the bilayer with
). 8,0, 6 25 YYYY . . . . .
o XY square packing has eight nearest neighbor interactions and
% : ool the bilayer with hexagonal packing has nine nearest neighbor

interactions, for some density range the former is more stable
FIG. 12. The lateral configuration of a density3f,=0.9800) because of the occupation of sites with interlayer particle-
that corresponds to the rhombic phase for the system with hard cofearticle separations that correspond to the position of the
repulsions. The upper layer is denoted by empty circles, and thattractive well, and hence decrease the energy of the system.
lower layer is denoted by filled circles and is mostly hidden. The bilayer with rhombic packing on the other hand has only
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FIG. 14. Energy(potential plus kinetigper particle distribution FIG. 16. The interlayer lattice spacing distribution for the sys-

for the system with hard core repulsions for densities that corretem with a Marcus-Rice interparticle potential in the density range

sponds to the rhombic phasgsp=1.0200 (empty triangle, p3p 0.92006< p3,=<0.9900 that corresponds to thé\2+2] transition.
=1.0000(filled circle), and p3,=0.9800(empty square

) ) ) particle-particle separations to one with only short particle-
seven(four intralayer and three interlayenearest neighbor haricle separations is continuous. The explanation proposed

interactions. The close packed density of the rhombic phasgyr this behavior starts with the observation that the one layer
is larger than that of the square phasg but small_er than that %§stem exhibits only hexagonal packing. Then the potential
the hexagonal phase. Then, at a fixed density where thgnergy of the system is the same for a fixed number of short
rhombic phase can be found, it is preferable to have thgnq |ong particle-particle spacings, independent on their spa-
coexistence of square and hexagonal phases rather than;g gistribution, and the equilibrium distribution of particle-
pure rhombic phase. o . particle separations is determined by maximizing the entropy
In a single layer colloid suspension in which the particle-f the system. A similar situation is encountered in the two

particle interaction is of the Marcus-Rice form, there can b&ayer system studied in this paper when the wall separation is
coexistence of different particle-particle separations withoufy” the range 1.86<H<2.30r. In that case we find that

phase separatiof8]. Zangi and Rice showed that there is @ here js a continuous transformation between the limiting

density range in which the one layer hexagonal solid is ggnfigurations associated with the long and short particle-
single phase with mixed short and long particle-particlepayticle separations in each of the layers, without any phase
separations. The long particle-particle separations correseparation. Throughout this transformation the system retains
spond to the position of the attractive well in the interparticleyq |ayer hexagonal packingpuckled or unbuckled For the
potential. The short particle-particle separations, which deyyq|| separation range 1.86<H<2.30r two layer square
crease continuously as the density increases, correspond to

positions along the soft repulsive part of the Marcus-Rice
potential, and the transition from a phase with only long

0.040 T T T . . '
’a)
Py

0.030

relative intensity
(=]
Q
n
(=3

0.010 p

0.000

0.85 0.95 1.05 R 1.15 . . .

Voronoi polygon area (g')

FIG. 15. The Voronoi polygon area distribution for the system
with hard core repulsions for densities that correspond to the rhom-
bic phase: p5,=1.0200 (empty triangle, p3p=1.0000 (filled FIG. 17. Voronoi polygon constructiofempty squares are the
circle), and p35=0.9800(empty square Voronoi vertices for a perfect arrangement of a square lattice.
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FIG. 18. Voronoi polygon constructiofempty squares are the FIG. 19. The configuration of a square lattice from a bilayer
Voronoi vertice$ for a slightly distorted arrangement of a square system(just one layer is shown
lattice that is generated by moving the upper right particle of Fig.
17 by 10% of the interparticle distance to the left. The Voronoi polygon associated with partigleV(i), is
determined by the intersection of the half-planes that bisect
packing is unstable with respect to two layer hexagonathe vectors';; from the center of particlé to the centers of
packing at all densities. Over the density range theghase  the neighboring particles. It can be shown that the particle
(buckled or unbuckledis stable we find, just as in the one that is the closest to particledefines an edge af(i). More-
layer case, coexistence of interlayer long and short particlegver it turns out, for cases in which the interparticle distance
particle spacings and a continuous transition between the twig of the order of the particle size, that every particle in the
limiting configurations. It appears to be the case that justirst coordination shell defines an edge\ii). Although the
when the wall separation reaches a value which permits thgonverse is not, in general, true, it is customary to associate
two layer square packed phase to be stale=(0.800),  the particles in the first coordination shell with the edges of
coupling of the interlayer particle-particle separation transi-(j).
tion to the 2A\—2 transition ylelds a situation where the In the Varonoi po|ygon mappmg of a perfect lattice at
values of the short and long interlayer particle-particle dis-T=q every edge of a polygon is associated witlefines a
tances are fixed for the entire range of densities that span thgsarest neighbor particle, because all the particles associated
transition (Fig. 16). In this case the potential energy of the wjth these edges have the same distance from paititel
system is no longer independent of the spatial distribution ofre, equally, the closest to it. Noting that in our application
the short and long interlayer particle-particle spacings; thehe Voronoi mapping is applied to an instantaneous configu-
phase separation that is observed corresponds to the configigtion sampled from an equilibrium ensemble, we recognize
ration that minimizes the energand thereby also the free
energy of the system, and the transition becomes strongly 50
first order.
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APPENDIX: NEAREST NEIGHBOR SEARCH

Our analysis of the structure of a confined two layer col-
loidal suspension exploits the character of the first coordina- oo .
tion shell of a particle. We carry out this analysis via a 00 05 10 15
Voronoi polygon mapping of the particle configuration, a
method that is widely used in computational geometry FIG. 20. The pair correlation function of the structure shown in

[9,10]. Fig. 19.

2.0 25 3.0 3.5 4.0
/e
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TABLE I. The results for nearest neighbor search for a slightly ~ The Voronoi polygon edges that are associated with par-

distorted square lattice with 2025 sites. ticles that are not in the first coordination shell are in general
small. Consequently, the orientations of the Voronoi polygon
Population determined by vertices do not change much relative to where they were for

the perfect square lattidsee Fig. 18 Then the number of

Number —  Number of  Cutoff distance Voronoi polygon 4 ricjes in the first coordination shell determines the shape

of NN's  Voronoi edges  of r=1.3% symmetry of the Voronoi polygon, and we can use its symmetry to
3 0 0 0 calculate the number of nearest neighbors. To this end, we
4 45 2025 2025 calculated the modulus of the quantity
5 484 0 0 L
6 970 0 0 W= > emii, (A1)
7 478 0 0 =1
8 48 0 0 for m=n;,n,—1, ...,3,wheren; is the number of vertices

9 and up 0 0 0 of V(i), 3 is the smallest closed polygon a#g is the angle

between an arbitrary fixed axis and the line connecting par-
ticle i and vertey of its Voronoi polygon. The symmetry of
that the fluctuations characteristic of thermal equilibriumthe Voronoi polygon is determined ti%, which is the value
slightly distort the structure of the map, and that the distri-of m that maximizes|¥,|?>. The f nearest neighbors to
bution of separations between the central particle and thogearticlesi are thus thén particles with the smallest; .
in the first coordination shell has a nonzero width. Since we To check the accuracy of our method of calculating the
are assuming cases for which every particle in the first coornumber of nearest neighbors, we analyzed the Voronoi poly-
dination shell defines an edge bf(i), these slightly dis- gon mapping of the configuration of 2025 particles in one
torted Voronoi polygons can generate situations where théayer of a two layer thermally equilibrated system with
number of edges o¥(i) is equal to or larger than the num- square lattice symmetr{Fig. 19. We also calculated the
ber of nearest neighbors to particldt can be show9] that  pair correlation function of this layefFig. 20, and deter-
the maximum number of unit spheres that can be in contaghined that the minimum between the first and second peaks
with a given sphere is an upper bound to the average numbé& atr=1.35r. The number of nearest neighbors was then
of Voronoi polygon edges for any set of poirtsis six for  calculated from(i) the number of Voronoi polygon edges,
two dimensions, 12 for three dimensions, ettlence, the (ii) the number of particles that are closer than .36 a
association of the particles in the first coordination shell withselected particle, andii) the Voronoi polygon symmetry.
the edges oW/(i) is adequate for any system in which the The results obtained are summarized in Table I. We find that
average number of nearest neighbors is maximal. This inferthe results of calculation@) and(iii) agree in all details. We
ence follows from the observation that in such a system fonote that the average number of Voronoi polygon edges for
any positive defect in the Voronoi polygon structure there isthis slightly distorted square lattice is six. The determination
a compensating negative defect. of the number of nearest neighbors by the method described
In the application of a Voronoi mapping to the squarehere also correctly reproduces the coexistence of four, five,
lattice we note that each vertex is a point that is equidistansix, and seven coordinated sites.
from four particlegFig. 17). The two particles that lie on the There is a density range for which, in the rhombic phase,
diagonals of the square are not nearest neighbors of eacthe lattice anglef, is close to 60°. When this is the case
other, and the perpendicular bisector of the line betweethermal fluctuations of the lattice angle can be larger than the
those two particles does not enter the Voronoi polygondifference betweerd, and 60°, and the number of nearest
Rather, that line passes through one of Voronoi polygon verneighbors determined by the Voronoi polygon symmetry
tices, and we again conclude that each edge of the Voronainalysis is six rather than four. To overcome this problem we
polygon is associated with a nearest neighbor. The degemsed information obtained from the particle spacing distribu-
eracy described breaks down when there is a small distortiotion. If the number of apparent nearest neighbors is deter-
of the square lattice. In that case a vertex of the Voronomined for the rhombic phase to be six, then two of those
polygon for the perfect lattice splits into two vertices, must be more distant from the central particle than the other
thereby introducing an additional edge to the Voronoi poly-four. For densities with a bimodal particle spacing distribu-
gon for the distorted latticéFig. 18. The bisected particle- tion we reduced the number of nearest neighbors from six to
particle separation that is the source of the new edge belondsur. The reduction of the number of nearest neighbors was
to the second coordination shell, so that the list of Voronoiapplied just for sites where the two largest apparent nearest
edges then includes both those associated with the nearestighbor distances were, on average, larger than the average
neighbor particles and with other particles. However, thevalue of the four smallest nearest neighbor separations plus
number of edges is subject to the constraint that the averaghe width of the distribution of separations. In the other lim-
number of Voronoi polygon edges can not exceed six. Wating case, wherp, is close to 90°, there is coexistence be-
must extract from this extended list just the particles of thetween a rhombic phase witthy=75° and a square phase, so
first coordination shell. Just this problem was also encounthe determination of the number of nearest neighbors from
tered in the work of Weiss, Oxtoby, and Gridrl]. the Voronoi polygon symmetry is not compromised.
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